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Abstract. Neutron stars provide a unique laboratory for studying matter at extreme pres-
sures and densities. While there is no direct way to explore their interior structure, X-rays
emitted from these stars can indirectly provide clues to the equation of state (EOS) of the
superdense nuclear matter through the inference of the star’s mass and radius. However,
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inference of EOS directly from a star’s X-ray spectra is extremely challenging and is com-
plicated by systematic uncertainties. The current state of the art is to use simulation-based
likelihoods in a piece-wise method which relies on certain theoretical assumptions and sim-
plifications about the uncertainties. It first infers the star’s mass and radius to reduce the
dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a
series of enhancements to the state of the art, in terms of realistic uncertainty quantifica-
tion and a path towards circumventing the need for theoretical assumptions to infer physical
properties with machine learning. We also demonstrate novel inference of the EOS directly
from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius
step. Our network is conditioned on the sources of uncertainty of each star, allowing for
natural and complete propagation of uncertainties to the EOS.
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1 Introduction

Neutron stars are the densest stellar objects, providing a unique laboratory for studying
matter in physical conditions that cannot be replicated on Earth and are only found in these
neutron-packed remnants of massive stars (g 8 My). Insights about the forms of matter
which emerge under these extreme conditions can improve our understanding of two of the

least well-understood fundamental forces, quantum chromodynamics and gravity.

The neutron-rich matter within the inner regions of a neutron star can reach supranu-
clear densities of 10 g/ Cmg, potentially leading to transitions to stable non-nucleonic states
of strange matter in the form of hyperons [1-3], deconfined quark matter made of up, down,
and strange quarks [4, 5], color superconducting phases [6, 7], or Bose-Einstein condensates



made of negatively charged pions or K~ mesons [8-10]. The structure and behavior of matter
at such extreme densities are one of the great mysteries in modern science, prompting decades
of theoretical and experimental research into the interior composition of a neutron star.

The nature of matter within a neutron star is compactly summarized by its equation of
state (EOS), the relationship between pressure P and energy density €, which show starkly
different behaviors under the various states of strange matter hypotheses described above.
This relationship is determined by the microphysical interactions between various particles
within the star, relative abundances of different particle species, as well as the star’s tem-
perature. Understanding the EOS of supranuclear density matter has been of interest to the
nuclear and astrophysics communities for decades, resulting in many proposed phenomeno-
logical models for the equation of state of neutron star matter. Variations in models arise
from a lack of precise knowledge of nuclear interactions between particles at such extreme
conditions, as well as the wide range of densities and isospin asymmetries that are thought
to exist within neutron stars [11].

While the internal pressure and density cannot be directly observed, the EOS of a star
in static gravitational equilibrium determines stellar properties such as its mass and radius,
which in turn determine observables such as the stellar X-ray spectrum. Conversely, the
stellar spectra can be used to infer the masses and radii, which in principle allow inference of
the EOS [12-17], though inversion of this second step is numerically very difficult. Additional
challenges are due to the small number of neutron star observations, @(10), and the significant
uncertainty of individual measurements. It is therefore vital that as much information as
possible is extracted from each star, and that the uncertainties be propagated accurately, to
provide the most complete information possible about the EOS.

At the same time, there has been a dramatic burst of progress in artificial intelligence,
specifically deep learning [22], a modern re-branding of neural networks. This progress has led
to breakthroughs not only in traditional areas such as natural language processing and com-
puter vision but also in the natural sciences, including particle physics, often increasing the
statistical power of difficult-to-collect data [23] while allowing robust handling of uncertain-
ties [24]. Where earlier neural networks were limited in size, computing progress especially
in the form of Graphical Processing Units (GPUs), has enabled the deployment of larger and
deeper networks that can handle more complex and higher-dimensional data [25, 26], allow-
ing direct analysis of data without requiring dimensional reduction, or other preprocessing
steps, that can often sacrifice useful information. The full power of these techniques has not
yet been brought to bear on many astrophysical tasks.

In the context of the inference of neutron star EOS, recent work by Fujimoto et al. [18,
19] demonstrated the ability of deep networks to regress the EOS directly from a set of
stellar mass-radius pairs, without the need to extract the functional relationship between
mass and radius. Their analysis used a toy model to describe the uncertainties in mass and
radius, assuming uncorrelated Gaussian errors randomly drawn from ad-hoc priors. Real
measurements, of course, do not often obey these simplifying assumptions, and show com-
plex correlations between mass and radius [27]. Related work [20] has demonstrated similar
regression, again assuming Gaussian uncertainty on mass and radius values, but with clever
efforts to reduce dependence on EOS parameterization. An alternative approach [21] uses
both neural networks and support vector machines to regress the EOS from stellar radii and
tidal deformations.

More realistic characterization of the uncertainties in the mass-radius plane can be
extracted using the state-of-the-art tool XSPEC [28], which assumes a theoretical model for



the star and telescope response, allowing for explicit calculation of the likelihood of telescope
spectra for various mass and radius values. The likelihood can be used in the standard way
to extract best-estimates and uncertainty contours of any shape in the mass-radius plane.
However, these complex mass-radius likelihoods cannot be trivially incorporated into the
existing EOS inference schemes, motivating the simplifying assumptions of uncorrelation
normal distributions which can be described by two width values. An additional concern is
that XSPEC’s contours rely on the simplifying assumptions of the theoretical model.

What has received less attention in the literature are likelihood-free methods to infer
the EOS directly from the telescope spectra, without the intermediate stepping stone of the
mass-radius determination and the challenges of its representation. This would allow for
the full propagation of realistic uncertainties and the relaxation of assumptions about the
theoretical model.

In this paper, we present a technique of EOS inference which allows for the full propaga-
tion of the uncertainties in the X-ray spectra, without making simplifying assumptions about
the shape of the contours in the mass-radius plane. We proceed in three steps, beginning
from an approach similar to the state of the art but with realistic uncertainty propagation,
and moving towards end-to-end infererence. In the first step, our neural network model in-
fers the neutron star EOS from a set of stellar masses and radii extracted from XSPEC, but
rather than making simplifying assumptions or extracting uncertainty contours from XSPEC,
we vary the assumed nuisance parameters (NPs) which are the source of the uncertainty to
produce new best-estimate mass-radius points. The EOS inference can then be performed
on many sets, each corresponding to varied NP values, producing a variation in the inferred
which represents the propagated uncertainty. In the second step, we investigate a more flex-
ible method of inferring the mass and radius that does not explicitly rely on XSPEC’s specific
theoretical model. We introduce a network capable of directly analyzing high-dimensional
neutron star spectra, performing inference of stellar mass and radii from telescope spectra,
a demonstration of the impressive capacity of modern deep networks. Finally, we perform
a first-of-its-kind inference of the EOS parameters directly from a multi-star set of stellar
spectra, without requiring the intermediate step of collapsing the information into mass and
radius; see figure 1. In both cases, we allow for full propagation of uncertainties by condi-
tioning the networks on the stellar nuisance parameters. As this is — to our knowledge —
the first attempt at full propagation of these uncertainties for this task, there are no direct
benchmarks in prior work. Instead, we show comparisons between our three methods and
visualize the impact on the EOS inference of variation of the nuisance parameters for a fixed
X-ray spectrum.

The paper is organized as follows. In section 2, we provide background on the physics of
the connection between the nuclear equation of state and the stellar observations. Section 3
describes the fundamentals of the machine learning concepts on which our studies rely. Details
of the samples of simulated data are given in section 4. Section 5 demonstrates inference of
the EOS parameters from mass and radius, while section 6 describes how mass and radius
parameters can be inferred directly from stellar spectra, and section 7 shows end-to-end
inference of EOS parameters from a set of neutron star spectra.

2 Background

2.1 Equation of state for dense matter

Neutron star interiors present a unique opportunity to study matter under conditions beyond
the reach of terrestrial laboratories: matter that is extremely high in density, relatively cold in
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Figure 1. Overview of the regression task, which involves either inferring stellar summary quantities
such as mass and radius, which can then be used to deduce the equation of state as in earlier work [18—
21] or inference of EOS directly from stellar spectra, as is demonstrated in this study.

temperature, and isospin-asymmetric [29]. Perhaps the closest experimental constraints have
come from ultrarelativistic heavy-ion collisions (as conducted at the RHIC [30], the LHC [31],
and FAIR [32]), which probe the nature of hot, symmetric nuclear matter Extremely neutron-
rich matter is more recently probed in studies of neutron skin or giant monopole and dipole
resonances, but these studies are limited in nature [33]. Unfortunately, these experiments
currently lack the temperature and density constraints present within the core of a neutron
star — meaning the dense matter encountered within a neutron star cannot yet be replicated
by experiment.

While properties of superdense matter cannot be derived directly from experiments,
certain general principles from general relativity and quantum chromodynamics (QCD) guide
the theoretical investigation into neutron star matter. Neutron star structure is controlled
by the long-range gravitational force [34, 35] which holds the star together and short-range
strong interactions between nucleons and nuclei which provide the pressure that prevents
the star from collapsing. At low nuclear densities (below nuclear saturation), effective field
theories based on QCD provide a systematic basis for nuclear forces, which offers good
constraints on two-nucleon interactions [35-37]. At higher densities, the QCD framework
predicts that baryonic matter (where quarks are confined within hadrons) will experience
a phase transition to quark-gluon plasma (QGP), where quarks and gluons are freed from
hadronic boundaries [37]. Other stable states of non-nucleonic matter may also occur, like
the formation of hyperons, color superconducting phases of quark matter, or Bose-Einstein
condensates of different mesons [8, 10]. Theoretical uncertainties have resulted in a wide
range of proposed phenomenological models for the EOS of neutron star matter, which can
then be tested by experiment or observation.

The EOS of neutron star matter is intrinsically linked to macroscopic characteristics like

gravitational mass M and radius R through the general relativistic stellar structure equation
known as the Tolman-Oppenheimer-Volkoff (TOV) equation [38, 39]. This equation assumes



the object is spherically symmetric, non-rotating, and non-magnetic. The TOV equation is
given by (assuming geometrized units where G = ¢ = 1):

dP  (e+ P)(m+ 473 P)
dr r2 (1 _ m) @1

r

where m is the gravitational mass enclosed within a sphere of radius . The mass of the star

can be solved for as:

d
d—T = 47r2e (2.2)

where the total gravitational mass M of a star with radius R is given by M = m(R) =
47 f(fz dr r%e. Given an EOS, numerically solving the TOV equation for M and R is straight-
forward. These equations create a one-to-one map from the EOS to the M — R relation [17];
the inverse form of this map can therefore provide constraints on the EOS from observable
properties. To mathematically invert the TOV equation, at least two stars’ mass and radius
must be known exactly, a feat is not possible with current observational technology. Solving
the inverse problem is therefore much more complicated, potentially even intractable without
making significant numerical assumptions.

2.2 X-ray spectroscopy for neutron stars

Many reliable observations of neutron stars come from X-ray emission, either from electro-
magnetic radiation from pulsars or thermal emission in quiescent low-mass X-ray binaries
(qLMXBs). qLMXBs are particularly desirable to place strong constraints on neutron star
structure as they are likely to have low magnetic fields (103~2 G), resulting in minimal effects
on the radiation transport or temperature distribution on the star’s surface [27, 40, 41]. Addi-
tionally, these binaries are identified in globular clusters where distances, ages, and reddening
are well-constrained [42]. The distinctive soft thermal spectra from these sources come from
a long-lived thermal glow resulting from heat stored in the deep crust of the neutron stars
within the binary system during accretion, which is then re-radiated from the whole surface
when accretion stops [43]. For the context of this work, the inference of EOS will come from
simulated thermal spectra from qLMXBs.

Observation of neutron star emission, whether X-ray or gravitational wave, has long
served as a way to constrain mass and radius for neutron stars (e.g. [44, 45]), but uncertainties
arise in the inference of these properties for a variety of reasons. In the case of X-ray radiation
from qLMXBs, constraints on mass and radius are determined by fitting the emitted spectrum
with an appropriate atmosphere model (where the surface composition is known or can be
determined by the X-ray spectrum) and combining the spectroscopic measurements with the
distance of the source. Models for thermal X-ray radiation are based on a light-element
atmosphere, as the lightest element that is present in the atmosphere floats to the top due to
rapid gravitational settling on neutron star surfaces [27]. Atmospheric models used on X-ray
spectra from qLMXBs gave the first broad constraints on neutron star radius, and more
modern analyses of X-ray spectra have provided tighter constraints on both radius and EOS.

The high-resolution imaging and spectroscopy of NASA’s Chandra X-ray Observatory
have provided powerful insight into neutron star properties like cooling [46, 47], mass and
radius [27], and binary mergers of exotic stars [48]. Chandra’s telescope contains a system
of four pairs of mirrors that focus incoming X-ray photons to the Advanced CCD Imaging
Spectrometer (ACIS), which measures the energy of each incoming X-ray. The observed



spectrum, along with a corresponding instrument response, is then fit to a well-motivated
parameterized model. Many such models for spectral fitting exist in XSPEC [28], an X-
ray spectral fitting package distributed and maintained by the aegis of the GSFC High
Energy Astrophysics Science Archival Research Center (HEASARC). These parameterized
models differ for different types of X-ray sources, as well as assumptions about the source’s
atmosphere, magnetic field, temperature (a full list of models can be found in the XSPEC
manual [28]). XSPEC has been used numerous times in the past to analyze data from Chandra
as well as other spectrometers like NICER, Nustar, and XMM-Newton, making it a valuable
resource for inference of neutron star properties.

3 Machine learning

Machine learning methods, in particular deep learning, aim to extract useful knowledge from
data automatically and are rapidly being applied across many data-rich fields of science [22].
In regression tasks such as EOS inference, one is interested in constructing a function f
whose inputs are the observed data and whose outputs are an estimate of some parameter of
interest. The optimal function f is not known initially, but an approximation can be learned
from a set of input-output example pairs.

In order to approximate f, machine learning methods first begin with a suitable class C
of parameterized functions (e.g. polynomials of a certain degree, neural networks of a certain
architecture) and then seek to find the best approximation to f within the class C. This
is typically done through a stochastic gradient descent procedure that seeks to iteratively
minimize the approximation error on the training set.

The well-known technique of linear regression is the most elementary form of regression,
and can be viewed as a form of shallow learning (no hidden layers). Deep learning generalizes
linear regression by using multi-layer neural networks as the class C' and thus enabling the
construction of sophisticated and flexible non-linear approximations. With sufficient training
data and computing power, deep learning methods can handle large-scale problems with
high dimensional data and avoid heuristic simplifications that lose information. It is not
uncommon to deal with problems with input sizes in the range of up to 10° examples, each
with dimensions of 10374, with neural networks that can have up to 10'' free parameters.
Training sets can range in size from 10' to 10'© or more. Unlike shallow learning and
linear regression, deep learning does not require that the number of parameters be equal to
the number of training examples [49]. More recent, attention-based architectures, such as
transformers [50, 51|, allow networks to take advantage of structures and symmetries in the
data, and are applied in sections below.

When the interpretation of data depends on external unmeasured or poorly-known
parameters, such as neutron star temperature or distance, it can be useful to apply param-
eterized networks [25]. Such networks learn a task as a function of the external parameter,
allowing for evaluation of a fixed dataset under varying assumptions about the parameter [24].

4 Training samples

Samples of simulated neutron stars, used to train networks and evaluate their performance,
are described below.

Each simulated star is described by two high-level summary quantities, mass and radius,
which are drawn from the mass-radius relation determined by the EOS, as well as three nui-
sance parameters that are independent of the EOS and can vary from star to star. These five



Saturation Property Value Units

no 0.153 fm—3

Ey —16.3 MeV

Ko 300.0  MeV
my/mn 0.70 —

J 32.5 MeV

Ly 55.0 MeV

Un —65.5 MeV

Table 1. Parameters of the model used to select example equations of state for the generation of
simulated data samples. Shown are properties of the symmetric nuclear matter at saturation density
for the GM1L parametrization of neutron star interiors [52]; see text for details.

parameters are sufficient to determine the expected simulated Chandra telescope spectrum
in the chosen NS theoretical model. In the case of EOS inference, sets of stars with consistent
EOS are grouped to form training and testing sets. Details of each step of the generation are
provided below.

4.1 Equation of state

The equation of state of the hadronic matter within the core is modeled with the relativistic
non-linear mean field model GM1L [52]. The version used here only accounts for protons and
neutrons but can be extended to include hyperons and A baryons [53]. The corresponding
saturation properties of symmetric nuclear matter for the GM1L parametrization are shown
in table 1 [53, 54]. These properties include the nuclear saturation density ng, energy per
nucleon Ey, nuclear compressibility Ky, effective nucleon mass m},/my, asymmetry energy
J, asymmetry energy slope Lg, and the value of the nucleon potential Uy. The value of Lg
listed in table 1 is in agreement with the value of the slope of the symmetry energy deduced
from nuclear experiments and astrophysical observations [55].

The most commonly used constraints on Ky come from experimental values of the giant
monopole resonance, which lie in the range of 220 to 260 MeV [56, 57]. The analysis of [58],
however, suggests a higher range of 250 to 315 MeV. The value of Ky = 300 MeV considered
in our paper falls into the latter category, but this will not dramatically impact the neutron-
rich equation of state appropriate for neutron star interiors. The GMI1L equation of state
for the core is paired with two models for the crust. For the outer crust, which falls in the
density range 10%-10'! g/cm®, we use the Baym-Pethick-Sutherland (BPS) model [59]. For
the inner crust, with densities in the range 10*1-10* g/ cm®, we use the Baym-Bethe-Pethick
(BBP) model [60].

To limit the number of parameters the networks must learn, the essential features of
the high-density portion of the EOS needed to be represented efficiently by just a few values.
This can be done accurately by constructing parametric representations based on spectral
fits, formed as generalizations of the Fourier series used to represent periodic functions [15].
An EOS, defined as P = P(e) or ¢(P) = ¢, can be represented as a linear combination of
basis functions e (¢):

e(p) =D exPr(p) (4.1)
k



where ¢ (p) can be any complete set of functions. The EOS is therefore determined by
the spectral coefficients €, making €, = €(p, ;). There are two important conditions that
a physical EOS must satisfy to ensure microscopic stability. The first is that the EOS
must be non-negative, or p(e) > 0, and the second is that pressure must be monotonically
increasing with density [15]. Because these conditions are not naturally respected by arbitrary
basis functions in a spectral representation, representing an EOS with a straightforward
spectral expansion will likely produce data that violates microscopic stability and is therefore
erroneous. To ensure these two conditions are met, we instead turn to a faithful construction
of spectral representations of the EOS; the process for constructing these is outlined in detail
in [61] and [15].

The spectral representation of GM1L is formed from representing the EOS in terms of
the relativistic enthalpy, h, where the EOS can be rewritten as a pair of equations P = P(h)
and € = €(h). The enthalpy can be defined as

P /
h(P) = /0 G(P,)dcjirp, (4.2)

where c is the speed of light [61]. Inverting eq. (4.2) obtains the equation P = P(h), which
can recover the EOS €(P) as e(h) = €¢[P(h)]. The pair of equations P = P(h) and € = e(h)
can be expressed from a reduction to quadrature:

h

P(h) = Py + (coc® + Po) /h (i)l (4.3)
() = —P(R)e + (eo + poc)pu(h). (4.4

The function p(h) is defined as:

h
w(h) = exp {/h 2 + F(h’)]dh’} (4.5)

0

which is dependent on the sound speed or velocity function I'(h) and constants Py = P(hg)
and eg = €(hp) [61]. Similar to eq. (4.1), the velocity function can be represented as a spectral
expansion:

I'(h,vg) = exp [Z thl)k(h)] (4.6)
k

where ®y(h) is any complete set of basis functions on the domain [hg, Amax]-

We constructed enthalpy-based causal spectral fits for the GM1L EOS with up to 10
parameters. Figure 2 shows that just two spectral parameters produce parameterizations with
a mean relative error of only 10%, and additional parameters can reduce the error to 5% or
lower. A small number of parameters is preferred due to the increased complexity of learning
multiple parameters, and the danger of Runge’s phenomenon when applying our networks to
current neutron star observations with accurate readings of mass and radius, which are still
relatively few. Runge’s phenomenon arises when attempting to fit equispaced data points
with polynomials of high degree; increasing the order of the polynomial interpolation can
result in issues with convergence or divergence rates for certain functions [62]. When applied
to neutron star observation, attempting to fit a small number of data points (with varying
accuracy in observation method) with a model having many parameters may result in fits
that accurately fit the data, but are very poor representations of the actual physics. Based
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on the reasons listed above, we chose to use two spectral parameters to represent the EOS,
hereafter referred to as A1 and ;.

To create many samples needed for training and testing, spectral parameters were then
constructed from the expression:

)\generated = )\true : (1 +2- Scale(—0.5 + ran2))

where Agenerated Tepresents the newly constructed spectral parameter, Agye is the best fit
(true) spectral parameter of GM1L, and scale is a scaling parameter set to 0.05. ran2 are
uniformly distributed random numbers in the range 0 to 1 generated by the ran2 function
given in [63]. This process was repeated to create 10* different EOS variations. Each EOS
variation was used to generate a coinciding M—R relation using equations (2.1), (2.2), exam-
ples of which are seen in figure 3, from which 100 (M, R) pairs are selected, each representing
stellar parameters consistent with that EOS. Due to the random component of our EOS
generation, some models have a mass peak below the current observed mass limit, 2.1 Mg.
All models have a minimum mass of at least 1 My . The physicality of predicted results will
be discussed in further detail 8.

4.2 Modeling X-ray spectra

The relation between stellar parameters (M, R) is determined by the EOS, and samples from
the allowed curve are used as input to generate simulated X-ray Chandra spectra, such as the
Chandra observation of the quiescent low-mass X-ray binary (qLMXB) X7 in the globular
cluster 47 Tuc [27].

The XSPEC program [28], which can be used for spectral fitting, is also capable of
generation of simulated spectra, via the fakeit command when a NS model and telescope
response matrix are provided.
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curves determined by the selected EOS parameters.

The NS theoretical model NSATMOS [13] selected includes a hydrogen atmosphere model
with electron conduction and self-irradiation. The Chandra telescope response specified in
ref. [13] was also used to describe the instrument response and telescope effective area.

4.3 Nuisance parameters

The NSATMOS model has five parameters to describe each star: gravitational mass M in units
of M®, radius R in units of km, and three additional parameters related to observation.
For the context of M—R and subsequent EOS inference, only M and R are parameters
of interest, whose values come from those generated by the GMI1L EOS and so provide
information relevant to the physical question. The remaining three nuisance parameters are
the effective temperature of the surface, Teg, the distance to the star, d, and the hydrogen
column, Ny which parameterizes the reddening of the spectrum by the interstellar medium.
These parameters influence the observed spectrum of a given neutron star. Lack of knowledge
of these values is a leading source of uncertainty in the inference of mass and radius, and
hence EOS.

Using table 1 in ref. [45] as a guide, we find that distances typically range between 2
and 10kpc, and hydrogen columns lie between 0.2 and 5 x 102! cm™2. While neutron stars
with larger distances and larger hydrogen columns exist, they are sufficiently distant as to
be difficult to obtain spectral information. From table 3 in ref. [64], effective temperatures
at the surface typically lie between 50 and 200€V, or from 6 x 10° and 2.4 x 10% K. Note that
core temperatures are typically a few orders of magnitude larger. Again colder neutron stars
most certainly exist but are more difficult to observe.

~10 -



Nuis. Param. True Tight Loose

Distance exact 5%  20%
Hydrogen Column Ny exact  30%  50%
log(Teg) exact £0.1 0.2

Table 2. Description of “true”, “tight”, and “loose” nuisance parameter (NP) scenarios. Shown are
the width of each Gaussian distribution representing the prior knowledge of each NP. For distance
and Ny, width is relative; for log(Tug), it is absolute. See text for details and references.

Examples of generated spectra for varying stellar parameters are shown in figure 4.
The generated spectra are very sensitive to the effective surface temperature, with lesser
sensitivity to other parameters. The dependence of the curves in figure 4 to the changing
nuisance parameters is not surprising: roughly proportional to radius and distance squared,
but higher power in temperature.

The networks detailed below provide estimates of either the neutron star mass and radius
or the EOS parameters, conditioned on NP values. Uncertainty in regressed parameters of
interest due to uncertainties in the NP can then be fully propagated via variation of the
NPs used during regression. To demonstrate the impact of NP uncertainties, we define three
example scenarios of uncertainties, dubbed “true”, “tight”, and “loose”, which describe the
quality of prior information on the NP values for each star.

In the “true” scenario, the NPs are set to the true value used to generate the spectra,
such that the NP prior is essentially a delta function. In the “tight” scenario, the uncertainty
is described as a narrow Gaussian for each NP, with distance having a width of 5%, hydrogen
column having a width of 30%, and log(T.g) having a width of 0.1. In the “loose” scenario,
the uncertainties are described by a wider Gaussian, with distance having a width of 20%,
hydrogen column having a width of 50%, and log(7Tegs) having a width of 0.2. These ranges
are shown in table 2. The sensitivity to NP values is reflected in the performance of the
networks below.

5 Inference of EOS from mass and radius

Previous applications of machine learning to the task of inferring the equation of state have
begun from the stellar mass and radii [18-20], or equivalent parameters [21], though with
simple ad-hoc descriptions of the uncertainty on stellar mass and radius values, often mod-
eled as two-dimensional uncorrelated Gaussians rather than fully propagating the underlying
uncertainties. In this section, we tackle the same problem, but where the stellar data are
more realistic and the underlying uncertainties are fully propagated to the EOS estimation.
Specifically, the best estimates of stellar mass and radius are derived using state-of-the-art
tools that extract them from realistic stellar spectra, which include the impact of stellar
nuisance parameters and limited observation time. In addition, this mass-radius estimation
is conditioned on the nuisance parameters, such that variations in those nuisance parameters
lead to variations in the mass and radius estimates. This connects directly to the neural
network regression of EOS parameters from mass-radius values parameterized in the nui-
sance parameters, allowing for the direct propagation of the underlying uncertainties to give
a measure of the resulting uncertainty on the regressed EOS parameters.

Below, we describe the extraction of realistic mass and radius values with XSPEC and
their subsequent use in NN regression of the EOS parameters and the estimation of the
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Figure 4. Examples of simulated stellar spectra expected for several values of stellar parameters.
Each pane shows the expected rate of photons in Chandra per energy bin, for variations of the
parameters of interest (mass M, radius R) as well as for variations of the nuisance parameters (NVy,
log(Test), distance). The dashed black line has the same parameters in each pane.

uncertainty. For comparison, we also provide a demonstration of the regression of EOS
parameters using polynomial regression. In subsequent sections, we consider an alternative
extraction of mass and radius using a NN, as well as end-to-end regression of EOS directly

from stellar spectra.
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5.1 Mass and radius inference by XSPEC

Sample stellar spectra are generated as described above, including Poisson noise correspond-
ing to an observation time of 100ks, and nuisance parameters variations as specified in
table 2.

Given a sample observed X-ray spectrum, the XSPEC code scans the mass and radius
parameter space, searching for values that best describe it. For each mass-radius pair, the
expected spectrum is calculated using the chosen model and telescope response function,
identical to those used to generate the sample spectra being fit. The fitted values are those
which minimize a bin-wise x2, and reported errors are those which generate a fixed increase
in the x? metric.

To propagate the uncertainty due to the lack of knowledge of the NP values, the fit on
a given spectrum is performed several times with varying assumed values of the NPs drawn
from the appropriate prior. The variation in the resulting fitted values then describes the
impact of uncertainty on the NPs. For this reason, during each single XSPEC fit, the NP
values are not allowed to vary, but are frozen. Figure 5 shows examples for individual stars,
demonstrating the variation of the stellar parameter estimates with varying NP values. For
illustrative comparison to ad-hoc models of uncertainty, the standard deviation in mass and
radius are used to define the widths of a 2d error ellipse, though it is clear that this fails to
capture the complex nature of the impacts of the underlying uncertainties; these simple error
models are not used in our analysis.

XSPEC is also capable of floating the nuisance parameters, varying their values to improve
an individual fit, and reporting an uncertainty envelope in the mass-radius plane. This can
be helpful in the case where the mass and radius and their envelope are the final targets.
However, to propagate the uncertainty downstream requires that we have the full posterior
in the mass-radius plane or samples from it. An estimate and envelope do not provide
that capacity, though they can allow for ad-hoc parameterizations of the prior as have been
performed previously. We condition on the nuisance parameters to allow full propagation of
the NP uncertainty through to EOS estimation, as we do below.

Performance of XSPEC regression of mass and radius is shown in figure 6, where the
residuals increase as expected with wider priors on the nuisance parameters. In addition,
note that in the case of the “loose” priors, there is a small fraction of cases where XSPEC
fails to converge on an estimate, as the nuisance parameters are fixed to a value far from the
value used to generate the spectrum.

One important note regarding XSPEC’s performance is the same theoretical model,
NSATMOS, is used in both the data generation and regression. Because of this, the regression
models discussed in the next section can, at best, match XSPEC’s performance for the eval-
uation dataset. Nonetheless, it is an important step in demonstrating the capacity of these
methods to perform such inference without explicitly relying on a single theoretical model.

5.2 Inference of EOS from mass and radius

In this section, we demonstrate the inference of EOS parameters from the stellar mass and
radius data, using neural network regression parameterized in the NPs to allow propagation
of the uncertainty. In addition, we build polynomial regression models which serve as a
benchmark, following ref. [18].
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Figure 5. Estimation of the mass and radius of a neutron star from the underlying stellar spectra,
by xSPEC. Each pane represents one star, and shown (green) are estimates for several independent
values of the nuisance parameters drawn from the associated priors, and the mean value (red). Top
two cases have loose priors, bottom two have tight. The dashed ellipse, whose widths are set to the
standard deviation of the mass and radius estimates, is a demonstration of the inadequacy of a simple
uncertainty model.

5.2.1 Neural network regression

Deep feed-forward neural networks are trained to provide the EOS parameters given a collec-
tion of ten stars, each represented by their mass and radius. Each network has two outputs,
A1 and Ao.
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Figure 6. Performance of XSPEC inference of neutron star mass and radius, as measured by residuals
between the fitted (“pred”) and true values under three treatments of the nuisance parameters (NPs).
In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases, they are
drawn from narrow or wide priors, respectively; see text for details. Cases in which XSPEC fails to
converge are shown as large negative residuals.

We train three networks, one for each of the true, tight, and loose NP scenarios. All
networks have identical architecture, 10 hidden layers with 32 nodes each followed by an
output layer with 2 nodes. Rectified linear units are used as activation functions for the
hidden layers while linear activations are used for the output layers. They were trained
up to 1000 epochs with a mean squared error (MSE) loss and an Adam optimizer [65],
and the performance is evaluated on independent validation data. The performance was not
found to be highly sensitive to hyper-parameter tuning, so permutation symmetry preserving
architectures were not explored. The networks were implemented using Tensorflow 2.7.0
on a single NVIDIA RTX A5000 GPU.

5.2.2 Polynomial regression

Following the example of ref. [18], as a performance benchmark we also construct a poly-
nomial regression model to regress EOS parameters A\; and A9 from stellar mass and radius
information. The input for each model is a 20 x 1 vector containing the following information
from each of ten stars: mass M, radius R.
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Each 20 x 1 input to the polynomial regression network represents a set of stars, all of
which are chosen from the same EOS. We construct two multivariate polynomial regression
models of degree two, following the general form:

N .
A=ho+ Y Bt

i=1,2

where each [ are coefficients and N = 20 to represent the cluster size, or 10 mass-radius
pairs. Polynomial features were created using the machine learning toolbox scikit-learn [66],
and subsequently fit to a linear regression model. This model uses optimization in the form
of ordinary least squares, which takes the form:

ming|| X3 — |3
where X is the NV = 20 input vector, and y is the target EOS parameter, either \; or As.

5.2.3 Estimation of uncertainty

The uncertainty in the underlying NS nuisance parameters has a significant impact on the
estimation of EOS parameters. Because the mass and radius estimation is conditioned on
the NPs, leading to variations in the mass and radius, (e.g. see figure 5), those variations can
be propagated through the EOS estimation. The significant uncertainties in stellar nuisance
parameters and the small number of stars observed to date make the treatment of those
uncertainties vital. The validity of the final result is only as powerful as the validity of its
uncertainties. In figure 7, examples of the variation of the EOS estimates are shown, where
the underlying stellar spectra are fixed. Thus, this provides a measure of the uncertainty in
the EOS due to the uncertainty in the NPs.

5.2.4 Performance

Performance of neural network regression of the EOS parameters A\; and Ao are compared to
polynomial regression of the same quantities using identical datasets via comparison of the
residuals, the difference between the true and regressed values. As seen in figures 8 and 9,
while PR is able to achieve narrower residuals in the true case, the network regression is more
robust in cases with larger uncertainties.

This result confirms what has been seen in earlier studies of NN regression from mass-
radius pairs [18], but our study extends previous work by using realistic values of the mass
and radius inferred from realistic simulated spectra, as well as by demonstrating uncer-
tainty quantification, via full propagation of the underlying uncertainties due to nuisance
parameters.

6 Inference of mass and radius from spectra

Previous applications of machine learning to neutron star datasets focus on analysis of mass-
radius pairs, as demonstrated above, rather than direct analysis of the stellar spectra by
neural networks.

A potential obstacle to direct analysis of spectra by neural networks is that the spec-
tra are high-dimensional, often with ((10?) bins of photon energy. However deep learning
methods combined with GPUs have no trouble analyzing data with similarly high dimen-
sionality [25], opening up new opportunities to tackle this important topic. While the mass
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Figure 7. Neural network regression of the EOS parameters A; and Ay of a set of 10 neutron stars
from their masses and radii as estimated by XSPEC from each stars spectrum. Each pane represents an
example dataset of 10 simulated stars, and shown (green) are EOS estimates for several independent
values of the stellar nuisance parameters drawn from the associated priors, and the mean value (red).
Top two cases have loose priors, bottom two have tight.

and radius are powerful summaries of the information in the lower-level spectra which is
relevant to the equation of state, direct ML analysis of the spectra themselves may allow for
the extraction of additional information or provide more robust propagation of uncertainties.
As an initial step, we begin by estimating the stellar mass and radius from a single stellar
spectrum before moving on to end-to-end inference of EOS parameters directly from a set of
spectra in the next section.

In this section, we apply machine learning to the task of extracting the mass and ra-
dius from the stellar spectra, training a network we refer to as MR_ Net. This serves as a
demonstration of the capabilities of ML to grapple with high-dimensional datasets, allows
us to harmonize the treatment of nuisance parameters end-to-end from spectra to EOS, and
potentially extract more relevant information.
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Figure 8. Comparison of the performance of NN regression and polynomial regression of EOS
parameter A\; from mass radius pairs inferred by XSPEC from stellar spectra. Shown is the residual,
the difference between the predicted and true values for each of three treatments of the stellar nuisance
parameters. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases,
they are drawn from narrow or wide priors, respectively; see text for details.

6.1 MR_ Net method

We build a network whose inputs correspond to the bins of the stellar X-ray spectrum, and
whose outputs are the estimates of the star’s mass and radius. In addition, the mass and
radius regressor is parameterized on the stellar nuisance parameters (distance, Ny, log(Tes)),
which allows the results to be conditioned on the nuisance parameters.

This architecture is composed of two input branches, one to process the star’s spectra
and another to process the corresponding nuisance parameters. Each branch contains a series
of layers that process its inputs in isolation. Following these initial layers, the output from
the branches is combined, forming a single vector containing all the information. This vector
is then passed to a final series of layers to predict the star’s mass and radius. Each segment of
the network, both the branches and the main trunk of the network, contain four layers, giving
the network eight layers in total. All fully connected layers contain 275 nodes and utilize a
dropout probability of 0.25. The network employs skip connections between alternate layers.
This stabilizes the training process and adds robustness to the network overall. The network
is trained with an MSE loss and an Adam optimizer with an initial learning rate of 0.00017
which is slowly decayed over the course of training.
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Figure 9. Comparison of the performance of NN regression and polynomial regression of EOS
parameter Ao from mass radius pairs inferred by XSPEC from stellar spectra. Shown is the residual,
the difference between the predicted and true values for each of three treatments of the stellar nuisance
parameters. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases,
they are drawn from narrow or wide priors, respectively; see text for details.

Mass-radius regression is formulated as a supervised learning problem, where the net-
work learns to minimize the error between the true mass and radius and its predictions. The
network weights are updated by stochastic gradient descent using backpropagation. The
Huber loss function is used and the Adam optimizer computes gradients and schedules the
backward passes.

6.2 MR_ Net performance in mass, radius

We begin with the best-case scenario in which the nuisance parameters are known with zero
uncertainty, referred to as “true NP” above. Figure 10 shows the performance of MR,_ Net
given neutron star spectra with statistical noise corresponding to 100,000 seconds (100 ks)
of observation time, as well as for spectra without statistical noise. This demonstrates the
contribution of statistical noise to the residual and demonstrates the network’s ability to
digest the spectral information and understand the dependence on mass and radius.

What is clear is that MR, Net is capable of extracting the mass and radius values of the
star directly from the spectrum. We emphasize that the network is trained on examples, but
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Figure 10. Performance of the MR_ Net regression of a neutron star mass (top) and radius (bottom)
from its stellar X-ray spectrum. Shown is the residual, the difference between the true and predicted
values, for spectra with statistical noise (blue) corresponding to an observation time of 100ks, and
for spectra without statistical noise (red), which demonstrates the capacity of the network. Nuisance
parameters are fixed to their true values.

does not benefit from the knowledge of the theoretical model used to generate these stars,
while XSPEC requires precise specification of the theoretical model. This lack of requirement of
a theoretical model opens new possibilities, such as training MR, Net to interpolate smoothly
between theoretical models by providing a mixed or parameterized training set.

The MR_ Net is conditioned on the nuisance parameters, allowing for propagation of
the NP uncertainties through to the regression target as was done with XSPEC estimates.
To assess the impact of NP uncertainty, we draw from priors on the NPs under the “tight”
and “loose” scenarios defined earlier. The residuals widen, as expected. Figures 11 and 12
show the mass and radius residuals, respectively, under each NP scenario for MR_ Net and
XSPEC. Table 3 shows the mean and width of each residual distribution, as well as the
combined width. As an additional comparison, figure 13 shows the ratio of predicted values
from MR _Net to true values subtracted from 1.

MR, Net is capable of analyzing the stellar spectrum directly and extracting stellar
parameters in a robust manner that allows for propagation of NP uncertainties.

6.3 Network uncertainty on mass and radius

Conditioning the extraction of M and R on the nuisance parameters allows for the natural
propagation of the corresponding uncertainties. As was done for XSPEC mass and radius
estimates, we propagate the NP uncertainty through to mass and radius uncertainty by
sampling from the stellar NP priors several times for a given stellar spectrum, performing the
mass and radius regression multiple times. Figure 14 demonstrates this for several example
stars. Note that the variation of NP values does not produce variation in M and R which can
be accurately summarized by 2D uncorrelated Gaussians, as has been assumed in previous
studies [18] with ad-hoc datasets.

—90 —



[ XSPEC, True NP

100 [ MR_Net, True NP

107t

Fraction

1072

“a 2 0 2 4
Mtrue - Mpred (Mo )

10° "
[ XSPEC, Tight NP

1 MR_Net, Tight NP

107t

Fraction

1072

4 2 0 2 4
Mtrue = Mpred (Mo)

1 XSPEC, Loose NP
[ MR_Net, Loose NP

107!

Fraction

“a 2 0 2 4
Mtrue = Mprea (M o)

Figure 11. Performance of the MR_ Net regression of a neutron star mass from its stellar X-ray
spectrum, compared to regression using XSPEC. Shown is the residual, the difference between the true
and predicted values, for three scenarios of nuisance parameter uncertainties. In the “true” case, the
NPs are fixed to their true values; in the “tight” and “loose” cases, they are drawn from narrow or
wide priors, respectively; see text for details.

6.4 Revisiting EOS regression

The question driving the analysis of neutron star spectra is not a desire to measure their
masses and radii, but to use those to determine the equation of state parameters. In this
section, we push the results of MR_ Net through our NN regression of EOS parameters to
analyze the performance of spectra — (M, R) — EOS regression. In later sections, we remove
the intermediate step and perform direct spectra — EOS regression.

Performance of the EOS regression using stellar mass and radius information from
MR, Net is shown in figures 18 and 19, and compared to regression from mass and radius
information by XSPEC. Examples of uncertainty propagation through to EOS estimates are
shown in figure 15.

7 Inference of EOS from spectra

In the previous section, we connected the two ML models, MR_ Net (spectra — M, R) and
our EOS regression NN (M, R — EOS). This required the collapse of the full information
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Figure 12. Performance of the MR_ Net regression of a neutron star radius from its stellar X-ray
spectrum, compared to regression using XSPEC. Shown is the residual, the difference between the true
and predicted values, for three scenarios of nuisance parameter uncertainties. In the “true” case, the
NPs are fixed to their true values; in the “tight” and “loose” cases, they are drawn from narrow or
wide priors, respectively; see text for details.

and dependence on nuisance parameters into these two physical quantities. At the same time,
MR, Net demonstrated that it is possible to regress physics quantities directly from high-
dimensional stellar spectra. In this section, rather than connecting two networks via mass and
radius, we use a single network to perform end-to-end regression of EOS parameters from a set
of stellar spectra, avoiding the information collapse, keeping the full information, and allowing
for robust propagation of the stellar nuisance parameters into uncertainty quantification for
the EOS parameters of interest.

In addition to a demonstration of the power of networks to directly analyze low-level
data, this allows us to probe the question of whether the mass and radius are sufficient
statistics, and whether they contain all of the information relevant to the problem. There
are many examples in the literature in which such well-motived high-level heuristics fail to
capture the complete information contained in lower-level data. In this case, while in principle
the mass and radius are all that are required to infer the EOS in the context of a fixed
theoretical stellar model, such information is never without uncertainty. Full propagation of
the dependence on nuisance parameter uncertainty may allow for more accurate and robust
estimates.

- 29 —



10t

[ True NP
[ Tight NP
. [ Loose NP
10°
c FH
L
9]
@©
i
[
107t
1072
-4 -2 0 2 4
Mpred / Mtrue -1
10t
[ True NP
[ Tight NP
1B [ Loose NP
100 =
c
o
2
O
©
=
[
107t
1072
-4 -2 0 2 4

Rpred / Rtrue -1

Figure 13. Performance of the MR_ Net regression of a neutron star mass (top) and radius (bottom)
from its stellar X-ray spectrum. Shown is the ratio of predicted (“pred”) to true values minus one
for three scenarios of nuisance parameter uncertainties. In the “true” case, the NPs are fixed to their
true values; in the “tight” and “loose” cases, they are drawn from narrow or wide priors, respectively;
see text for details.

Nuis. Mass Radius Combined
Method  Params I o 7 o o
XSPEC True —0.01 0.50 0.23 1.44 1.51
MR,_ Net  True —0.14 0.93 —0.07 2.80 2.99
XSPEC Tight —0.06 0.73 0.24 2.61 2.69
MR, Net  Tight 0.17 1.06 0.06 3.52 2.76
XSPEC Loose 0.18 0.86 —0.06 4.32 4.40
MR Net Loose 0.28 1.29 0.14 4.93 5.10

Table 3. Performance of the regression of neutron star mass and radius for XSPEC as well as our
neural network regression, MR_ Net, which lacks any knowledge of the theoretical model. Shown are
the mean (u) and standard deviation (o) of the residuals under three scenarios of nuisance parameter
uncertainties. In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose”
cases, they are drawn from narrow or wide priors, respectively; see text for details. The combined
column is a quadrature sum of the standard deviations of radius and mass.

Furthermore, there are properties of neutron stars that can be deciphered from spectra
beyond simply mass and radius. Quantities like temperature inhomogeneities [67] may impact
a star’s equation of state but are not captured by the mass and radius.
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Figure 14. Estimation of the mass and radius of a neutron star from the underlying stellar spectra,
by MR,_ Net. Each pane represents one star, and shown (green) are estimates for several independent
values of the nuisance parameters drawn from the associated priors, and the mean value (red). Top
two cases have loose priors, bottom two have tight. The dashed ellipse, whose widths are set to the
standard deviation of the mass and radius estimates, is a demonstration of the inadequacy of a simple
uncertainty model.

7.1 Architecture

Many neural network architectures operate on sequences of vectors, rather than set of vectors.
For instance, in natural language processing, the input may be a sentence where each word
is converted to a vector and the ordering of the vectors matters. However, in the case of
neutron stars and other problems, we need neural networks that operate on sets of vectors,
such as the independent spectra observations for multiple stars.
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Figure 15. Neural network regression of the EOS parameters A1 and Ay of a set of 10 neutron
stars from their masses and radii as estimated by MR_ Net from each stars spectrum. Each pane
represents an example dataset of 10 simulated stars, and shown (green) are EOS estimates for several
independent values of the stellar nuisance parameters drawn from the associated priors, and the mean
value (red). Top two cases have loose priors, bottom two have tight.

One architectures with invariant properties with respect to permutations of the input
vectors is the transformer architecture [50, 51]. Perhaps surprisingly, transformers were orig-
inally developed for problems in natural language processing, thus requiring the addition of
positional information bits to the vector encoding each word in order to recover the sequential
dimension. More recently they have been used in other areas, including physics [68, 69] in or-
der to leverage their permutation invariance properties. Transformer architectures typically
consists of stacks of encoder modules followed by decoder modules. The structure of each
encoder module and each decoder module is similar, thus we describe only a typical encoder
module. A transformer encoder module accepts an unordered set of inputs and produces a
set of outputs. The transformer employs a mechanism called self-attention, which allows it to
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Figure 16. Schematic diagram of the transformer neural network used to determine EOS coeflicients
A1 and Ao from an input of spectra and NPs.

compare each element in the set against every other. This mechanism allows the network to
attend to important features in the set while computing an output prediction. Briefly, self at-
tention (equation (7.1)) operates on an input matrix X, with N rows and D columns. Three
matrices are produced from the projection of X with differing, trainable, weight matrices:
Q=XWqo, K=XWg,V=XWy (termed Query, Key, and Value respectively).

T
S =D(Q, K,V) = softmax <?/IC{T ) V. (7.1)
q

Thus in short each output corresponds to a different convex combination of the Value vectors,
where each convex combination depends on the degree of similarity between the correspond-
ing Query and Key vectors. The similarity is computed by taking dot products between
corresponding Query and Key vectors, and then applying a softmax to yield a convex com-
bination (see [50, 51] for additional details).

In the neutron star application, the transformer architecture takes as input spectra and
corresponding nuisance parameters for each star in the set. In the results shown below, the
network is given a set of 10 stars, though the structure of the network allows it to accept
larger or smaller datasets with minimal modification. The final output of the network is the
two EOS parameters. This is shown schematically in figure 16.

The network is composed of six consecutive transformer blocks. Each block processes
the input through multi-head attention (with eight heads), followed by dropout (p = 0.15),
normalization, and fully connected layers. Following these blocks the output is processed
by one final fully connected layer in order to regress the EOS coefficients A1 and As. All
fully connected layers, with the exception of the final one, use the ReLLU activation function.
The Adam optimizer was used to provide gradient updates with an initial learning rate of
0.000075, which was slowly decade over the course of training.

7.2 Training

The parameters of the network architecture and the learning algorithm, the hyperparameters,
were optimized with Sherpa [70], a Python library for hyperparameter tuning. The algorithm
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Figure 17. Performance of the neural network regression of the neutron star EOS parameters A;
(top) and Ay (bottom) directly from a set of stellar X-ray spectra, without intermediate prediction
of the mass and radius. Shown is the residual, the difference between the true and predicted values,
for spectra with statistical noise (blue) corresponding to an observation time of 100k seconds per
star, and for spectra without statistical noise (red), which demonstrates the capacity of the network.
Nuisance parameters are fixed to their true values.

used is based on a random search and has the advantage of making no assumptions about
the structure of the hyperparameter search problem and thus is well suited for exploring a
variety of parameter settings. An initial exploratory search was conducted on a subset of the
data to find appropriate hyperparameters.

Following this exploratory phase, the network is trained for 1,000 epochs on the full
dataset. The Adam optimizer [65] is used for gradient descent, with early stopping monitoring
of the validation loss to prevent overfitting.

7.3 Results

Figure 17 shows the performance of spectra — EOS regression in the best-case scenario, where
the nuisance parameters are perfectly known. Shown is the performance with statistical noise
corresponding to 100 ks of observation time per star, as well as for spectra without statistical
noise. While there is significant width to the residuals, this is dominated by the statistical
uncertainty, not the network’s ability to digest the spectral information and understand the
dependence on mass and radius. This clearly demonstrates the network’s capacity is sufficient
for the regression task.

_97 —



Nuis. A A2 Combined

Method Params. 7 o 7 o o
NN(Spectra) True  —0.02 0.066 0.01 0.075 0.099
NN(M, R via MR_ Net) True —0.03 0.089 —0.02 0.068 0.112
NN(M, R via XSPEC) True —0.03 0.065 0.01 0.055 0.085
NN (Spectra) Tight  0.02 0085  —0.02 0.077 0.115
NN(M, R via MR_Net)  Tight 0.00 0.104 0.02 0.072 0.126
NN(M, R via XSPEC) Tight —0.03 0.081 0.01 0.056 0.098
NN(Spectra) Loose  —0.03 0.131 —0.01 0.078 0.152
NN(M, R via MR_Net) Loose —0.01 0.135 —0.02 0.078 0.156
NN(M, R via XSPEC) Loose  —0.03 0.123 0.01 0.058 0.136

Table 4. Performance of the regression of neutron star EOS parameters A\; and Ay using direct
regression from spectra, as compared to NN regression from mass and radius (M, R) information
extracted via MR_ Net or XSPEC. Shown are the mean () and standard deviation (o) of the residuals
under three scenarios of nuisance parameter uncertainties; distributions are given in figures 18 and 19.
In the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases, they are
drawn from narrow or wide priors, respectively; see text for details. The combined column is a
quadrature sum of the standard deviations of A\; and As.

We next analyze the performance of the direct regression in cases where the nuisance
parameters are not perfectly determined. Figures 18 and 19 shows the residuals in the EOS
parameters for the end-to-end regression, as compared to regression from mass and radius
information provided by MR_ Net or XSPEC from the stellar spectra. Table 4 summarizes
the performance for each method.

As the full network is again conditioned on the NPs, we can propagate this uncertainty
directly through our regression. Figure 20 demonstrates how variations of the NPs, drawn
from the appropriate priors, provide a measure of the uncertainty on the final result.

8 Discussion

The performance of the three methods are measured in simulated stellar samples generated
with the same theoretical stellar model that is assumed by XSPEC, which makes it a valuable
upper limit for the two fully neural network based methods, which must infer the relation-
ships. The three approaches perform comparably, and the end-to-end method slightly but
consistently outperforms the two-step method using MR, Net. Once trained, the end-to-end
network can handle any prior on the nuisance parameters, whereas the networks that rely on
XsPEC fits or MR, Net predictions need to first be trained on data with the desired prior.

When the data are simulated and drawn from a known theoretical model, one cannot
achieve more statistical power than directly calculating the likelihood. But even powerful
theoretical models for spectral fitting still rely on a variety of assumptions about the spec-
trum’s source. The flexibility of these fully neural network based approaches is an important
advantage, opening the door to interpolating between theoretical models [24], or even learn-
ing directly from observational data [71, 72]. An inference approach with this flexibility and
the capacity for robust propagation of uncertainties is vital.
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Figure 18. Performance of the regression of neutron star EOS parameter \; using direct regression
from spectra, as compared to regression from mass and radius information extracted via MR_ Net or
XSPEC. Shown are the residual distributions, the difference between the true and predicted values,
under three scenarios of nuisance parameter uncertainties. See table 4 for quantitative analysis. In
the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases, they are drawn
from narrow or wide priors, respectively (see text for details).

As a further visualization, figure 21 shows several example curves in the mass-radius
plane fitted to the same stellar spectra with varying nuisance parameters.

9 Conclusions

We have demonstrated the network regression of EOS parameters from realistic neutron star
mass and radius estimates drawn from simulated stellar spectra. Our approach of condition-
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Figure 19. Performance of the regression of neutron star EOS parameter A9 using direct regression
from spectra, as compared to regression from mass and radius information extracted via MR, Net or
XSPEC. Shown are the residual distributions, the difference between the true and predicted values,
under three scenarios of nuisance parameter uncertainties. See table 4 for quantitative analysis. In
the “true” case, the NPs are fixed to their true values; in the “tight” and “loose” cases, they are drawn
from narrow or wide priors, respectively (see text for details).

ing each step on nuisance parameters allows us to fold in the NP uncertainty via multiple
sampling from priors and permits full propagation of the uncertainty through to the final
regression targets. The full propagation is important because variation in NPs does not pro-
duce variations in the mass and radius of neutron stars that can be accurately summarised
as two dimensional uncorrelated Gaussians (see figure 14), as has been assumed in previous
studies. In addition, we have shown that networks can analyze high-dimensional telescope
data directly, including sets of multiple stars, and achieve comparable performance to meth-
ods that assume perfect knowledge of the theoretical model used to generate the simulated
samples. In realistic cases where the nuisance parameter uncertainties are significant, the
proposed end-to-end network regression achieves comparable precision in EOS regression to
the network using XSPEC fits or MR_ Net predictions.
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Figure 20. Neural network regression of the EOS parameters A\; and Ay of a set of 10 neutron stars
directly from the set of stellar spectra. Each pane represents an example dataset of 10 simulated
stars, and shown (green) are EOS estimates for several independent values of the stellar nuisance
parameters drawn from the associated priors, and the mean value (red). Top two cases have loose
priors, bottom two have tight.

These results suggest many future directions. Our networks are parameterized in the
nuisance parameters, allowing for the propagation of prior uncertainties which are implicity
derived from auxiliary data. But the stellar spectra may also offer information that constrains
the NP uncertainty. Profiling over the nuisance parameters could reduce this uncertainty,
though it may be computationally very expensive without neural likelihood estimation tech-
niques [73].
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Figure 21. Demonstration of the impact of nuisance parameters on the regression of EOS parameters
for three sets of observed stellar spectra. In red are the true mass and radius of the stars, drawn from
the mass-radius curve determined by the true EOS parameters. In blue dots are the values of the
mass and radius deduced by MR_ Net for each star given a set of stellar NPs drawn from the priors;
the blue line shows the mass-radius curve corresponding to the EOS parameters deduced directly from
the stellar spectra and NPs by the proposed end-to-end regression. The results of MR_ Net are not
used in the EOS regression, and only appear to aid the visualization. Brown and green are similar to
blue, but for independent draws of the NPs from the same stellar priors.

Alternatively, rather than employing regression to directly produce estimates of the
EOS parameters, one might train a generative model to operate as a surrogate of the likeli-
hood [74], allowing for fast evaluation of the likelihood as a function of the EOS parameters
and potentially direct profiling.

To reduce the impact on one particular set of theoetical assumptions, such networks
may be trained on a collection of theoretical models, and in the future when more telescope
data becomes available, even trained directly from observed spectra.

Other future directions for the networks described in this paper would be to test more
exotic neutron star equations of state, including those with phase transitions. Including
additional parameters will play a key role in conducting similar research using alternative
models in XSPEC that rely on different nuisance parameters, like a Helium atmospheric model.
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Even more interesting would be extending this type of EOS inference to other compact objects
like white dwarfs.
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